Sheehan's syndrome | |
---|---|
Other names | Simmond's syndrome, postpartum hypopituitarism, postpartum pituitary gland necrosis |
Anatomy of normal pituitary gland and surrounding structures | |
Empty sella turcica on MRI as seen in severe cases of Sheehan's syndrome | |
Specialty | Endocrinology, obstetrics and gynaecology |
Sheehan's syndrome, also known as postpartum pituitary gland necrosis, occurs when the pituitary gland is damaged due to significant blood loss and hypovolemic shock (ischemic necrosis) or stroke, originally described during or after childbirth leading to decreased functioning of the pituitary gland (hypopituitarism).[1] Classically, in the milder partial form, the mother is unable to breastfeed her baby, due to failure of the pituitary to secrete the hormone prolactin, and also has no more periods, because FSH (Follicle Stimulating Hormone) and LH (Luteinising Hormone) are not secreted. Although postmenopausal, the mother with this milder form of Sheehan's syndrome does not experience hot flushes, because the pituitary fails to secrete FSH (high levels of FSH, secreted by the pituitary in healthy postmenopausal women is an attempt to trigger ovulation, and these high levels of FSH cause hot the flushes). The failure to breastfeed and amenorrhea no more periods, were seen as the syndrome (a collection of symptoms), but we now view Sheehan's as the pituitary failing to secrete 1-5 of the 9 hormones that it normally produces (the anterior (front) lobe of the pituitary produces FSH, LH, prolactin, ACTH (Adreno-cortico-trophic hormone),TSH (Thyroid Stimulating Hormone) and GH (Growth Hormone); the posterior (the lobe at the back) pituitary produces ADH (Anti-Diuretic Hormone) and Oxytocin, i.e. the pituitary is involved in the regulation of many hormones. It is very important to recognise Sheehan' stroke as, the ACTH deficiency Sheehan's in the presence of the stress of a bacterial infection, such as a urine infection, will result in death of the mother from Addisonian crisis. [2][3] This gland is located on the under-surface of the brain, the shape of a cherry and the size of a chickpea and sits in a pit or depression of the sphenoid bone known as the sella turcica (the Turk's saddle).[4] The pituitary gland works in conjunction with the hypothalamus, and other endocrine organs to modulate numerous bodily functions including growth, metabolism, menstruation, lactation, and even the "fight-or-flight" response.[3] These endocrine organs, (like the thyroid gland in the neck, or adrenals on the upper pole of the kidneys), release hormones in very specific pathways, known as hormonal axes. For example, the release of a hormone in the hypothalamus will target the pituitary to trigger the release thyroid stimulating hormone (TSH), and the pituitary's released hormone (TSH) will target the next organ in the pathway i.e. the thyroid to release thyroxin. [3] Hence, damage to the pituitary gland can have downstream effects on any of the aforementioned bodily functions.