In the mathematical field of differential geometry, the Simons formula (also known as the Simons identity, and in some variants as the Simons inequality) is a fundamental equation in the study of minimal submanifolds. It was discovered by James Simons in 1968.[1] It can be viewed as a formula for the Laplacian of the second fundamental form of a Riemannian submanifold. It is often quoted and used in the less precise form of a formula or inequality for the Laplacian of the length of the second fundamental form.
In the case of a hypersurface M of Euclidean space, the formula asserts that
where, relative to a local choice of unit normal vector field, h is the second fundamental form, H is the mean curvature, and h2 is the symmetric 2-tensor on M given by h2
ij = gpqhiphqj.[2]
This has the consequence that
where A is the shape operator.[3] In this setting, the derivation is particularly simple:
the only tools involved are the Codazzi equation (equalities #2 and 4), the Gauss equation (equality #4), and the commutation identity for covariant differentiation (equality #3). The more general case of a hypersurface in a Riemannian manifold requires additional terms to do with the Riemann curvature tensor.[4] In the even more general setting of arbitrary codimension, the formula involves a complicated polynomial in the second fundamental form.[5]