Sine-Gordon equation

The sine-Gordon equation is a second-order nonlinear partial differential equation for a function dependent on two variables typically denoted and , involving the wave operator and the sine of .

It was originally introduced by Edmond Bour (1862) in the course of study of surfaces of constant negative curvature as the Gauss–Codazzi equation for surfaces of constant Gaussian curvature −1 in 3-dimensional space.[1] The equation was rediscovered by Frenkel and Kontorova (1939) in their study of crystal dislocations known as the Frenkel–Kontorova model.[2]

This equation attracted a lot of attention in the 1970s due to the presence of soliton solutions,[3] and is an example of an integrable PDE. Among well-known integrable PDEs, the sine-Gordon equation is the only relativistic system due to its Lorentz invariance.

  1. ^ Bour, Edmond (1862). "Theorie de la deformation des surfaces". Journal de l'École impériale polytechnique. 22 (39): 1–148. OCLC 55567842.
  2. ^ Frenkel J, Kontorova T (1939). "On the theory of plastic deformation and twinning". Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya. 1: 137–149.
  3. ^ Hirota, Ryogo (November 1972). "Exact Solution of the Sine-Gordon Equation for Multiple Collisions of Solitons". Journal of the Physical Society of Japan. 33 (5): 1459–1463. Bibcode:1972JPSJ...33.1459H. doi:10.1143/JPSJ.33.1459.