Specifically, the singular value decomposition of an complex matrix is a factorization of the form where is an complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, is an complex unitary matrix, and is the conjugate transpose of . Such decomposition always exists for any complex matrix. If is real, then and can be guaranteed to be real orthogonal matrices; in such contexts, the SVD is often denoted
The diagonal entries of are uniquely determined by and are known as the singular values of . The number of non-zero singular values is equal to the rank of . The columns of and the columns of are called left-singular vectors and right-singular vectors of , respectively. They form two sets of orthonormal bases and and if they are sorted so that the singular values with value zero are all in the highest-numbered columns (or rows), the singular value decomposition can be written as
where is the rank of
The SVD is not unique, however it is always possible to choose the decomposition such that the singular values are in descending order. In this case, (but not and ) is uniquely determined by
The term sometimes refers to the compact SVD, a similar decomposition in which is square diagonal of size where is the rank of and has only the non-zero singular values. In this variant, is an semi-unitary matrix and is an semi-unitary matrix, such that