In algebraic geometry, a morphism between schemes is said to be smooth if
(iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties.
If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
A singular variety is called smoothable if it can be put in a flat family so that the nearby fibers are all smooth. Such a family is called a smoothning of the variety.