Snub dodecahedron

Snub dodecahedron

(Click here for rotating model)
Type Archimedean solid
Uniform polyhedron
Elements F = 92, E = 150, V = 60 (χ = 2)
Faces by sides (20+60){3}+12{5}
Conway notation sD
Schläfli symbols sr{5,3} or
ht0,1,2{5,3}
Wythoff symbol | 2 3 5
Coxeter diagram
Symmetry group I, 1/2H3, [5,3]+, (532), order 60
Rotation group I, [5,3]+, (532), order 60
Dihedral angle 3-3: 164°10′31″ (164.18°)
3-5: 152°55′53″ (152.93°)
References U29, C32, W18
Properties Semiregular convex chiral

Colored faces

3.3.3.3.5
(Vertex figure)

Pentagonal hexecontahedron
(dual polyhedron)

Net
3D model of a snub dodecahedron

In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces.

The snub dodecahedron has 92 faces (the most of the 13 Archimedean solids): 12 are pentagons and the other 80 are equilateral triangles. It also has 150 edges, and 60 vertices.

It has two distinct forms, which are mirror images (or "enantiomorphs") of each other. The union of both forms is a compound of two snub dodecahedra, and the convex hull of both forms is a truncated icosidodecahedron.

Kepler first named it in Latin as dodecahedron simum in 1619 in his Harmonices Mundi. H. S. M. Coxeter, noting it could be derived equally from either the dodecahedron or the icosahedron, called it snub icosidodecahedron, with a vertical extended Schläfli symbol and flat Schläfli symbol sr{5,3}.