This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Spatial contextual awareness consociates contextual information such as an individual's or sensor's location, activity, the time of day, and proximity to other people or objects and devices.[1] It is also defined as the relationship between and synthesis of information garnered from the spatial environment, a cognitive agent, and a cartographic map. The spatial environment is the physical space in which the orientation or wayfinding task is to be conducted; the cognitive agent is the person or entity charged with completing a task; and the map is the representation of the environment which is used as a tool to complete the task.[2]
An incomplete view of spatial contextual awareness would render it as simply a contributor to or an element of contextual awareness – that which specifies a point location on the earth. This narrow definition omits the individual cognitive and computational functions involved in a complex geographic system. Rather than defining the myriad of potential factors contributing to context, spatial contextual awareness defined in terms of cognitive processes permits a unique, user-centered perspective in which "conceptualizations imbue spatial structures with meaning."[2]
Context awareness, geographic awareness, and ubiquitous cartography or Ubiquitous Geographic Information (UBGI) all contribute to the understanding of spatial contextual awareness. They are also key elements in a map-based, location-based service, or LBS. In cases in which the user interface for the LBS is a map, cartographic design challenges must be addressed in order to effectively communicate the spatial context to the user.
Spatial contextual awareness can describe present context – the environment of the user at the present time and location, or that of a future context – where the user wants to go and what may be of interest to them in the approaching spatial environment. Some location-based services are proactive systems which can anticipate future context.[3] Augmented reality is an application which guides a user through present and into future context by displaying spatial contextual information in their visual system as they traverse through real space.[4]
Numerous examples of LBS user-level software packages (applications), exist which require the ability to leverage spatial contextual awareness. These applications are in demand by the general public and are examples of how maps are being used by individuals to help better understand the world and make daily decisions.[5]