This article needs additional citations for verification. (December 2018) |
Species distribution modelling (SDM), also known as environmental (or ecological) niche modelling (ENM), habitat modelling, predictive habitat distribution modelling, and range mapping[1] uses ecological models to predict the distribution of a species across geographic space and time using environmental data. The environmental data are most often climate data (e.g. temperature, precipitation), but can include other variables such as soil type, water depth, and land cover. SDMs are used in several research areas in conservation biology, ecology and evolution. These models can be used to understand how environmental conditions influence the occurrence or abundance of a species, and for predictive purposes (ecological forecasting). Predictions from an SDM may be of a species’ future distribution under climate change, a species’ past distribution in order to assess evolutionary relationships, or the potential future distribution of an invasive species. Predictions of current and/or future habitat suitability can be useful for management applications (e.g. reintroduction or translocation of vulnerable species, reserve placement in anticipation of climate change).
There are two main types of SDMs. Correlative SDMs, also known as climate envelope models, bioclimatic models, or resource selection function models, model the observed distribution of a species as a function of environmental conditions.[1] Mechanistic SDMs, also known as process-based models or biophysical models, use independently derived information about a species' physiology to develop a model of the environmental conditions under which the species can exist.[2]
The extent to which such modelled data reflect real-world species distributions will depend on a number of factors, including the nature, complexity, and accuracy of the models used and the quality of the available environmental data layers; the availability of sufficient and reliable species distribution data as model input; and the influence of various factors such as barriers to dispersal, geologic history, or biotic interactions, that increase the difference between the realized niche and the fundamental niche. Environmental niche modelling may be considered a part of the discipline of biodiversity informatics.