Spectrin

A schematic diagram of spectrin and other cytoskeletal molecules
Localization of alpha-II spectrin in green under the plasma membrane of rat neurons in tissue culture as shown with confocal microscopy and immunofluorescence. The nuclei of the cells is revealed in blue by the DNA dye DAPI.

Spectrin is a cytoskeletal protein that lines the intracellular side of the plasma membrane in eukaryotic cells. Spectrin forms pentagonal or hexagonal arrangements, forming a scaffold and playing an important role in maintenance of plasma membrane integrity and cytoskeletal structure.[1] The hexagonal arrangements are formed by tetramers of spectrin subunits associating with short actin filaments at either end of the tetramer. These short actin filaments act as junctional complexes allowing the formation of the hexagonal mesh. The protein is named spectrin since it was first isolated as a major protein component of human red blood cells which had been treated with mild detergents; the detergents lysed the cells and the hemoglobin and other cytoplasmic components were washed out. In the light microscope the basic shape of the red blood cell could still be seen as the spectrin-containing submembranous cytoskeleton preserved the shape of the cell in outline. This became known as a red blood cell "ghost" (spectre), and so the major protein of the ghost was named spectrin.

In certain types of brain injury such as diffuse axonal injury, spectrin is irreversibly cleaved by the proteolytic enzyme calpain, destroying the cytoskeleton.[2] Spectrin cleavage causes the membrane to form blebs and ultimately to be degraded, usually leading to the death of the cell.[3] Spectrin subunits may also be cleaved by caspase family enzymes, and calpain and caspase produce different spectrin breakdown products which can be detected by western blotting with appropriate antibodies. Calpain cleavage may indicate activation of necrosis, while caspase cleavage may indicate apoptosis.[4]

  1. ^ Huh, Gi-Yeong; Glantz, Susan B.; Je, Soojung; Morrow, Jon S.; Kim, Jung H. (December 2001). "Calpain proteolysis of alpha-II-spectrin in the normal adult human brain". Neurosci. Lett. 316 (1): 41–4. doi:10.1016/S0304-3940(01)02371-0. PMID 11720774. S2CID 53270680.
  2. ^ Büki, A.; Okonkwo, D. O.; Wang, K. K.; Povlishock, J. T. (April 2000). "Cytochrome c release and caspase activation in traumatic axonal injury". J. Neurosci. 20 (8): 2825–34. doi:10.1523/JNEUROSCI.20-08-02825.2000. PMC 6772193. PMID 10751434.
  3. ^ Castillo, MR; Babson, JR. (1998). "Ca2+-dependent mechanisms of cell injury in cultured cortical neurons". Neuroscience. 86 (4): 1133–1144. doi:10.1016/S0306-4522(98)00070-0. PMID 9697120. S2CID 54228571.
  4. ^ Li, Jia; Li, Xue-Yuan; Feng, Dong-Fu; Pan, Dong-Chao (December 2010). "Biomarkers associated with diffuse traumatic axonal injury: exploring pathogenesis, early diagnosis, and prognosis". J. Trauma. 69 (6): 1610–1618. doi:10.1097/TA.0b013e3181f5a9ed. PMID 21150538.