Speech segmentation

Speech segmentation is the process of identifying the boundaries between words, syllables, or phonemes in spoken natural languages. The term applies both to the mental processes used by humans, and to artificial processes of natural language processing.

Speech segmentation is a subfield of general speech perception and an important subproblem of the technologically focused field of speech recognition, and cannot be adequately solved in isolation. As in most natural language processing problems, one must take into account context, grammar, and semantics, and even so the result is often a probabilistic division (statistically based on likelihood) rather than a categorical one. Though it seems that coarticulation—a phenomenon which may happen between adjacent words just as easily as within a single word—presents the main challenge in speech segmentation across languages, some other problems and strategies employed in solving those problems can be seen in the following sections.

This problem overlaps to some extent with the problem of text segmentation that occurs in some languages which are traditionally written without inter-word spaces, like Chinese and Japanese, compared to writing systems which indicate speech segmentation between words by a word divider, such as the space. However, even for those languages, text segmentation is often much easier than speech segmentation, because the written language usually has little interference between adjacent words, and often contains additional clues not present in speech (such as the use of Chinese characters for word stems in Japanese).