Spin group

In mathematics the spin group, denoted Spin(n),[1][2] is a Lie group whose underlying manifold is the double cover of the special orthogonal group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups (when n ≠ 2)

The group multiplication law on the double cover is given by lifting the multiplication on .

As a Lie group, Spin(n) therefore shares its dimension, n(n − 1)/2, and its Lie algebra with the special orthogonal group.

For n > 2, Spin(n) is simply connected and so coincides with the universal cover of SO(n).

The non-trivial element of the kernel is denoted −1, which should not be confused with the orthogonal transform of reflection through the origin, generally denoted −I.

Spin(n) can be constructed as a subgroup of the invertible elements in the Clifford algebra Cl(n). A distinct article discusses the spin representations.

  1. ^ Lawson, H. Blaine; Michelsohn, Marie-Louise (1989). Spin Geometry. Princeton University Press. ISBN 978-0-691-08542-5. page 14
  2. ^ Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1 page 15