Square tiling honeycomb

Square tiling honeycomb
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {4,4,3}
r{4,4,4}
{41,1,1}
Coxeter diagrams



Cells {4,4}
Faces square {4}
Edge figure triangle {3}
Vertex figure
cube, {4,3}
Dual Order-4 octahedral honeycomb
Coxeter groups , [4,4,3]
, [43]
, [41,1,1]
Properties Regular

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.[1]

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

  1. ^ Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III