Stochastic

Stochastic (/stəˈkæstɪk/; from Ancient Greek στόχος (stókhos) 'aim, guess')[1] is the property of being well-described by a random probability distribution.[1] Stochasticity and randomness are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; in everyday conversation, however, these terms are often used interchangeably. In probability theory, the formal concept of a stochastic process is also referred to as a random process.[2][3][4][5][6]

Stochasticity is used in many different fields, including the natural sciences such as biology, technology and engineering fields such as image processing, signal processing, computer science, information theory and telecommunications.[7] chemistry,[8] ecology,[9] neuroscience,[10] physics,[11][12][13][14] and cryptography.[15][16] It is also used in finance (e.g., stochastic oscillator), due to seemingly random changes in the different markets within the financial sector and in medicine, linguistics, music, media, colour theory, botany, manufacturing and geomorphology.[17][18][19]

  1. ^ a b "Stochastic". Lexico UK English Dictionary. Oxford University Press. Archived from the original on January 2, 2020.
  2. ^ Robert J. Adler; Jonathan E. Taylor (29 January 2009). Random Fields and Geometry. Springer Science & Business Media. pp. 7–8. ISBN 978-0-387-48116-6.
  3. ^ David Stirzaker (2005). Stochastic Processes and Models. Oxford University Press. p. 45. ISBN 978-0-19-856814-8.
  4. ^ Loïc Chaumont; Marc Yor (19 July 2012). Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, Via Conditioning. Cambridge University Press. p. 175. ISBN 978-1-107-60655-5.
  5. ^ Murray Rosenblatt (1962). Random Processes. Oxford University Press. p. 91. ISBN 9780758172174.
  6. ^ Olav Kallenberg (8 January 2002). Foundations of Modern Probability. Springer Science & Business Media. pp. 24 and 25. ISBN 978-0-387-95313-7.
  7. ^ Paul C. Bressloff (22 August 2014). Stochastic Processes in Cell Biology. Springer. ISBN 978-3-319-08488-6.
  8. ^ N.G. Van Kampen (30 August 2011). Stochastic Processes in Physics and Chemistry. Elsevier. ISBN 978-0-08-047536-3.
  9. ^ Russell Lande; Steinar Engen; Bernt-Erik Sæther (2003). Stochastic Population Dynamics in Ecology and Conservation. Oxford University Press. ISBN 978-0-19-852525-7.
  10. ^ Carlo Laing; Gabriel J Lord (2010). Stochastic Methods in Neuroscience. OUP Oxford. ISBN 978-0-19-923507-0.
  11. ^ Wolfgang Paul; Jörg Baschnagel (11 July 2013). Stochastic Processes: From Physics to Finance. Springer Science & Business Media. ISBN 978-3-319-00327-6.
  12. ^ Edward R. Dougherty (1999). Random processes for image and signal processing. SPIE Optical Engineering Press. ISBN 978-0-8194-2513-3.
  13. ^ Thomas M. Cover; Joy A. Thomas (28 November 2012). Elements of Information Theory. John Wiley & Sons. p. 71. ISBN 978-1-118-58577-1.
  14. ^ Michael Baron (15 September 2015). Probability and Statistics for Computer Scientists, Second Edition. CRC Press. p. 131. ISBN 978-1-4987-6060-7.
  15. ^ Jonathan Katz; Yehuda Lindell (2007-08-31). Introduction to Modern Cryptography: Principles and Protocols. CRC Press. p. 26. ISBN 978-1-58488-586-3.
  16. ^ François Baccelli; Bartlomiej Blaszczyszyn (2009). Stochastic Geometry and Wireless Networks. Now Publishers Inc. pp. 200–. ISBN 978-1-60198-264-3.
  17. ^ J. Michael Steele (2001). Stochastic Calculus and Financial Applications. Springer Science & Business Media. ISBN 978-0-387-95016-7.
  18. ^ Marek Musiela; Marek Rutkowski (21 January 2006). Martingale Methods in Financial Modelling. Springer Science & Business Media. ISBN 978-3-540-26653-2.
  19. ^ Steven E. Shreve (3 June 2004). Stochastic Calculus for Finance II: Continuous-Time Models. Springer Science & Business Media. ISBN 978-0-387-40101-0.