String field theory

String field theory (SFT) is a formalism in string theory in which the dynamics of relativistic strings is reformulated in the language of quantum field theory. This is accomplished at the level of perturbation theory by finding a collection of vertices for joining and splitting strings, as well as string propagators, that give a Feynman diagram-like expansion for string scattering amplitudes. In most string field theories, this expansion is encoded by a classical action found by second-quantizing the free string and adding interaction terms. As is usually the case in second quantization, a classical field configuration of the second-quantized theory is given by a wave function in the original theory. In the case of string field theory, this implies that a classical configuration, usually called the string field, is given by an element of the free string Fock space.

The principal advantages of the formalism are that it allows the computation of off-shell amplitudes and, when a classical action is available, gives non-perturbative information that cannot be seen directly from the standard genus expansion of string scattering. In particular, following the work of Ashoke Sen,[1] it has been useful in the study of tachyon condensation on unstable D-branes. It has also had applications to topological string theory,[2] non-commutative geometry,[3] and strings in low dimensions.[4]

String field theories come in a number of varieties depending on which type of string is second quantized: Open string field theories describe the scattering of open strings, closed string field theories describe closed strings, while open-closed string field theories include both open and closed strings.

In addition, depending on the method used to fix the worldsheet diffeomorphisms and conformal transformations in the original free string theory, the resulting string field theories can be very different. Using light cone gauge, yields light-cone string field theories whereas using BRST quantization, one finds covariant string field theories. There are also hybrid string field theories, known as covariantized light-cone string field theories which use elements of both light-cone and BRST gauge-fixed string field theories.[5]

A final form of string field theory, known as background independent open string field theory, takes a very different form; instead of second quantizing the worldsheet string theory, it second quantizes the space of two-dimensional quantum field theories.[6]

  1. ^ Sen, Ashoke (1999-12-29). "Universality of the tachyon potential". Journal of High Energy Physics. 1999 (12): 027. arXiv:hep-th/9911116. Bibcode:1999JHEP...12..027S. doi:10.1088/1126-6708/1999/12/027. ISSN 1029-8479. S2CID 1506387.
  2. ^ E. Witten, "Chern–Simons gauge theory as a string theory", Prog. Math. 133 637, (1995)
  3. ^ E. Witten, "Noncommutative tachyons and string field theory", hep-th/0006071
  4. ^ Gaiotto, Davide; Rastelli, Leonardo (2005-07-25). "A paradigm of open/closed duality Liouville D-branes and the Kontsevich model". Journal of High Energy Physics. 2005 (7): 053. arXiv:hep-th/0312196. Bibcode:2005JHEP...07..053G. doi:10.1088/1126-6708/2005/07/053. ISSN 1029-8479. S2CID 15225459.
  5. ^ Hata, Hiroyuki; Itoh, Katsumi; Kugo, Taichiro; Kunitomo, Hiroshi; Ogawa, Kaku (1986). "Manifestly covariant field theory of interacting string I". Physics Letters B. 172 (2). Elsevier BV: 186–194. Bibcode:1986PhLB..172..186H. doi:10.1016/0370-2693(86)90834-8. ISSN 0370-2693.
  6. ^ Witten, Edward (1992-12-15). "On background-independent open-string field theory". Physical Review D. 46 (12): 5467–5473. arXiv:hep-th/9208027. Bibcode:1992PhRvD..46.5467W. doi:10.1103/physrevd.46.5467. ISSN 0556-2821. PMID 10014938. S2CID 1135319.