Super heavy-lift launch vehicle

Super heavy-lift launch vehicles, to scale
Class overview
NameSuper heavy-lift launch vehicle
Preceded byHeavy-lift launch vehicle
BuiltSince 1967
General characteristics
Capacity
    • US definition: >50,000 kg (110,000 lb)
    • Russian definition: >100,000 kg (220,000 lb)

A super heavy-lift launch vehicle is a rocket that can lift to low Earth orbit a "super heavy payload", which is defined as more than 50 metric tons (110,000 lb)[1][2] by the United States and as more than 100 metric tons (220,000 lb) by Russia.[3] It is the most capable launch vehicle classification by mass to orbit, exceeding that of the heavy-lift launch vehicle classification.

Only 14 such payloads were successfully launched before 2022: 12 as part of the Apollo program before 1972 and two Energia launches, in 1987 and 1988. Most planned crewed lunar and interplanetary missions depend on these launch vehicles.

Several super heavy-lift launch vehicle concepts were produced in the 1960s,[4] including the Sea Dragon. During the Space Race, the Saturn V and N1 were built by the United States and Soviet Union, respectively. After the Saturn V's successful Apollo program and the N1's failures, the Soviets' Energia launched twice in the 1980s, once bearing the Buran spaceplane. The next two decades saw multiple concepts drawn out once again, most notably Space Shuttle-derived vehicles and Rus-M, but none were built. In the 2010s, super heavy-lift launch vehicles received interest once again, leading to the launch of the Falcon Heavy, the Space Launch System, and Starship, and the beginning of development of the Long March and Yenisei rockets.

  1. ^ McConnaughey, Paul K.; et al. (November 2010). "Draft Launch Propulsion Systems Roadmap: Technology Area 01" (PDF). NASA. Section 1.3. Archived from the original (PDF) on 24 March 2016. Retrieved 28 February 2016. Small: 0–2 t payloads; Medium: 2–20 t payloads; Heavy: 20–50 t payloads; Super Heavy: > 50 t payloads.
  2. ^ "Seeking a Human Spaceflight Program Worthy of a Great Nation" (PDF). Review of U.S. Human Spaceflight Plans Committee. NASA. October 2009. pp. 64–66. Archived from the original (PDF) on 16 February 2019. Retrieved 28 February 2016. ...the U.S. human spaceflight program will require a heavy-lift launcher ... in the range of 25 to 40 mt ... this strongly favors a minimum heavy-lift capacity of roughly 50 mt....
  3. ^ Osipov, Yury (2004–2017). Great Russian Encyclopedia. Moscow: Great Russian Encyclopedia. Archived from the original on 27 May 2021. Retrieved 9 June 2021.
  4. ^ "The Enormous Sea-Launched Rocket That Never Flew". Popular Mechanics. 3 April 2017. Retrieved 5 May 2024.