Quantum computing implementation
Superconducting quantum computing is a branch of solid state physics and quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots . For superconducting qubits, the two logic states are the ground state and the excited state , denoted
|
g
⟩
and
|
e
⟩
{\displaystyle |g\rangle {\text{ and }}|e\rangle }
respectively.[ 1] Research in superconducting quantum computing is conducted by companies such as Google ,[ 2] IBM ,[ 3] IMEC ,[ 4] BBN Technologies ,[ 5] Rigetti ,[ 6] and Intel .[ 7] Many recently developed QPUs (quantum processing units , or quantum chips) use superconducting architecture.
As of May 2016[update] , up to 9 fully controllable qubits are demonstrated in the 1D array ,[ 8] and up to 16 in 2D architecture.[ 3] In October 2019, the Martinis group, partnered with Google , published an article demonstrating novel quantum supremacy , using a chip composed of 53 superconducting qubits.[ 9]
^ Cite error: The named reference docs.pennylane.ai
was invoked but never defined (see the help page ).
^ Castelvecchi, Davide (5 January 2017). "Quantum computers ready to leap out of the lab in 2017" . Nature . 541 (7635): 9–10. Bibcode :2017Natur.541....9C . doi :10.1038/541009a . PMID 28054624 . S2CID 4447373 .
^ a b "IBM Makes Quantum Computing Available on IBM Cloud" . www-03.ibm.com . 4 May 2016. Archived from the original on May 4, 2016.
^ "Imec enters the race to unleash quantum computing with silicon qubits" . www.imec-int.com . Retrieved 2019-11-10 .
^ Colm A. Ryan, Blake R. Johnson, Diego Ristè, Brian Donovan, Thomas A. Ohki, "Hardware for Dynamic Quantum Computing", arXiv:1704.08314v1
^ "Rigetti Launches Quantum Cloud Services, Announces $1Million Challenge" . HPCwire . 2018-09-07. Retrieved 2018-09-16 .
^ "Intel Invests US$50 Million to Advance Quantum Computing | Intel Newsroom" . Intel Newsroom .
^ Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O’Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M. (4 March 2015). "State preservation by repetitive error detection in a superconducting quantum circuit". Nature . 519 (7541): 66–69. arXiv :1411.7403 . Bibcode :2015Natur.519...66K . doi :10.1038/nature14270 . PMID 25739628 . S2CID 3032369 .
^ Arute, Frank; Arya, Kunal; Babbush, Ryan; Bacon, Dave; Bardin, Joseph C.; Barends, Rami; Biswas, Rupak; Boixo, Sergio; Brandao, Fernando G. S. L.; Buell, David A.; Burkett, Brian; Chen, Yu; Chen, Zijun; Chiaro, Ben; Collins, Roberto; Courtney, William; Dunsworth, Andrew; Farhi, Edward; Foxen, Brooks; Fowler, Austin; Gidney, Craig; Giustina, Marissa; Graff, Rob; Guerin, Keith; Habegger, Steve; Harrigan, Matthew P.; Hartmann, Michael J.; Ho, Alan; Hoffmann, Markus; Huang, Trent; Humble, Travis S.; Isakov, Sergei V.; Jeffrey, Evan; Jiang, Zhang; Kafri, Dvir; Kechedzhi, Kostyantyn; Kelly, Julian; Klimov, Paul V.; Knysh, Sergey; Korotkov, Alexander; Kostritsa, Fedor; Landhuis, David; Lindmark, Mike; Lucero, Erik; Lyakh, Dmitry; Mandrà, Salvatore; McClean, Jarrod R.; McEwen, Matthew; Megrant, Anthony; Mi, Xiao; Michielsen, Kristel; Mohseni, Masoud; Mutus, Josh; Naaman, Ofer; Neeley, Matthew; Neill, Charles; Niu, Murphy Yuezhen; Ostby, Eric; Petukhov, Andre; Platt, John C.; Quintana, Chris; Rieffel, Eleanor G.; Roushan, Pedram; Rubin, Nicholas C.; Sank, Daniel; Satzinger, Kevin J.; Smelyanskiy, Vadim; Sung, Kevin J.; Trevithick, Matthew D.; Vainsencher, Amit; Villalonga, Benjamin; White, Theodore; Yao, Z. Jamie; Yeh, Ping; Zalcman, Adam; Neven, Hartmut; Martinis, John M. (October 2019). "Quantum supremacy using a programmable superconducting processor" . Nature . 574 (7779): 505–510. arXiv :1910.11333 . Bibcode :2019Natur.574..505A . doi :10.1038/s41586-019-1666-5 . PMID 31645734 .