In optics, a supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam, for example using a microstructured optical fiber. The result is a smooth spectral continuum (see figure 1 for a typical example). There is no consensus on how much broadening constitutes a supercontinuum; however researchers have published work claiming as little as 60 nm of broadening as a supercontinuum.[1] There is also no agreement on the spectral flatness required to define the bandwidth of the source, with authors using anything from 5 dB to 40 dB or more. In addition the term supercontinuum itself did not gain widespread acceptance until this century, with many authors using alternative phrases to describe their continua during the 1970s, 1980s and 1990s.
In the decade leading up to 2014, the development of supercontinua sources emerged as a research field.[2] This is largely due to technological developments, which have allowed more controlled and accessible generation of supercontinua. This renewed research has created a variety of new light sources which are finding applications in a diverse range of fields, including optical coherence tomography,[3][4] frequency metrology,[5][6][7] fluorescence lifetime imaging,[8] optical communications,[1][9][10] gas sensing,[11][12][13] and many others. The application of these sources has created a feedback loop whereby the scientists utilising the supercontinua are demanding better customisable continua to suit their particular applications. This has driven researchers to develop novel methods to produce these continua and to develop theories to understand their formation and aid future development. As a result, rapid progress has been made in developing these sources since 2000.
While supercontinuum generation has for long been the preserve of fibers, in the years leading up to 2012, integrated waveguides came of age to produce extremely broad spectra, opening the door to more economical, compact, robust, scalable, and mass-producible supercontinuum sources.[14][15]
^ abTakara, H.; Ohara, T.; Yamamoto, T.; Masuda, H.; Abe, M.; Takahashi, H.; Morioka, T. (2005). "Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source". Electronics Letters. 41 (5). Institution of Engineering and Technology (IET): 270–271. doi:10.1049/el:20057011. ISSN0013-5194.
^Spie (2014). "Robert Alfano on the supercontinuum: History and future applications". SPIE Newsroom. doi:10.1117/2.3201404.03.
^Hartl, I.; Li, X. D.; Chudoba, C.; Ghanta, R. K.; Ko, T. H.; Fujimoto, J. G.; Ranka, J. K.; Windeler, R. S. (2001-05-01). "Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber". Optics Letters. 26 (9). The Optical Society: 608–10. doi:10.1364/ol.26.000608. ISSN0146-9592. PMID18040398.
^Ranka, Jinendra K.; Windeler, Robert S.; Stentz, Andrew J. (2000-01-01). "Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm". Optics Letters. 25 (1). The Optical Society: 25–7. doi:10.1364/ol.25.000025. ISSN0146-9592. PMID18059770.
^Schnatz, H.; Hollberg, L.W. (2003). "Optical frequency combs: From frequency metrology to optical phase control". IEEE Journal of Selected Topics in Quantum Electronics. 9 (4). Institute of Electrical and Electronics Engineers (IEEE): 1041–1058. doi:10.1109/jstqe.2003.819109. ISSN1077-260X.
^Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; et al. (2004-11-20). "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy". Journal of Physics D: Applied Physics. 37 (23). IOP Publishing: 3296–3303. doi:10.1088/0022-3727/37/23/011. ISSN0022-3727. S2CID401052.
^Morioka, T.; Mori, K.; Saruwatari, M. (1993-05-13). "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres". Electronics Letters. 29 (10). Institution of Engineering and Technology (IET): 862–864. doi:10.1049/el:19930576. ISSN1350-911X.
^Morioka, T.; Takara, H.; Kawanishi, S.; Kamatani, O.; Takiguchi, K.; et al. (1996). "1 Tbit/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source". Electronics Letters. 32 (10). Institution of Engineering and Technology (IET): 906–907. doi:10.1049/el:19960604. ISSN0013-5194.
^H. Delbarre and M. Tassou, Atmospheric gas trace detection with ultrashort pulses or white light continuum, in Conference on Lasers and Electro-Optics Europe, (2000), p. CWF104.
^Sanders, S.T. (2002-11-01). "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy". Applied Physics B: Lasers and Optics. 75 (6–7). Springer Science and Business Media LLC: 799–802. doi:10.1007/s00340-002-1044-z. ISSN0946-2171. S2CID122125718.
^M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible, Opt. Commun. 220, 215–221 (2003).
^DeVore, P. T. S.; Solli, D. R.; Ropers, C.; Koonath, P.; Jalali, B. (2012-03-05). "Stimulated supercontinuum generation extends broadening limits in silicon". Applied Physics Letters. 100 (10): 101111. Bibcode:2012ApPhL.100j1111D. doi:10.1063/1.3692103. ISSN0003-6951.