Supercritical water oxidation

Supercritical Water (Red Area)

Supercritical water oxidation (SCWO) is a process that occurs in water at temperatures and pressures above a mixture's thermodynamic critical point. Under these conditions water becomes a fluid with unique properties that can be used to advantage in the destruction of recalcitrant and hazardous wastes such as polychlorinated biphenyls (PCB) or per- and polyfluoroalkyl substances (PFAS). Supercritical water has a density between that of water vapor and liquid at standard conditions, and exhibits high gas-like diffusion rates along with high liquid-like collision rates. In addition, the behavior of water as a solvent is altered (in comparison to that of subcritical liquid water) - it behaves much less like a polar solvent. As a result, the solubility behavior is "reversed" so that oxygen, and organics such as chlorinated hydrocarbons become soluble in the water, allowing single-phase reaction of aqueous waste with a dissolved oxidizer. The reversed solubility also causes salts to precipitate out of solution, meaning they can be treated using conventional methods for solid-waste residuals. Efficient oxidation reactions occur at low temperature (400-650 °C) with reduced NOx production.

SCWO can be classified as green chemistry or as a clean technology. The elevated pressures and temperatures required for SCWO are routinely encountered in industrial applications such as petroleum refining and chemical synthesis.

A unique addition (mostly of academic interest) to the world of supercritical water (SCW) oxidation is generating high-pressure flames inside the SCW medium. The pioneer works on high-pressure supercritical water flames were carried out by professor EU Franck at the German University of Karlsruhe in the late 80s. The works were mainly aimed at anticipating conditions which would cause spontaneous generation of non-desirable flames in the flameless SCW oxidation process. These flames would cause instabilities to the system and its components. ETH Zurich pursued the investigation of hydrothermal flames in continuously operated reactors. The rising needs for waste treatment and destruction methods motivated a Japanese Group in the Ebara Corporation to explore SCW flames as an environmental tool. Research on hydrothermal flames has also begun at NASA Glenn Research Center in Cleveland, Ohio.

Supercritical Fluids Reactor
The supercritical fluids reactor (SFR) at Sandia National Laboratories' Combustion Research Facility (CRF), 1995.
High-pressure, high-temperature optical cell.
High-pressure, high-temperature optical cell.