In mathematics and theoretical physics, a supermatrix is a Z2-graded analog of an ordinary matrix. Specifically, a supermatrix is a 2×2 block matrix with entries in a superalgebra (or superring). The most important examples are those with entries in a commutative superalgebra (such as a Grassmann algebra) or an ordinary field (thought of as a purely even commutative superalgebra).
Supermatrices arise in the study of super linear algebra where they appear as the coordinate representations of a linear transformations between finite-dimensional super vector spaces or free supermodules. They have important applications in the field of supersymmetry.