Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise. The main utility of the theory from the physical point of view is a rigorous theoretical explanation of the ubiquitous spontaneous long-range dynamical behavior that manifests itself across disciplines via such phenomena as 1/f, flicker, and crackling noises and the power-law statistics, or Zipf's law, of instantonic processes like earthquakes and neuroavalanches. From the mathematical point of view, STS is interesting because it bridges the two major parts of mathematical physics – the dynamical systems theory and topological field theories. Besides these and related disciplines such as algebraic topology and supersymmetric field theories, STS is also connected with the traditional theory of stochastic differential equations and the theory of pseudo-Hermitian operators.
The theory began with the application of BRST gauge fixing procedure to Langevin SDEs,[1][2] that was later adapted to classical mechanics[3][4][5][6] and its stochastic generalization,[7] higher-order Langevin SDEs,[8] and, more recently, to SDEs of arbitrary form,[9] which allowed to link BRST formalism to the concept of transfer operators and recognize spontaneous breakdown of BRST supersymmetry as a stochastic generalization of dynamical chaos.
The main idea of the theory is to study, instead of trajectories, the SDE-defined temporal evolution of differential forms. This evolution has an intrinsic BRST or topological supersymmetry representing the preservation of topology and/or the concept of proximity in the phase space by continuous time dynamics. The theory identifies a model as chaotic, in the generalized, stochastic sense, if its ground state is not supersymmetric, i.e., if the supersymmetry is broken spontaneously. Accordingly, the emergent long-range behavior that always accompanies dynamical chaos and its derivatives such as turbulence and self-organized criticality can be understood as a consequence of the Goldstone theorem.
:9
was invoked but never defined (see the help page).:15
was invoked but never defined (see the help page).:1
was invoked but never defined (see the help page).:16
was invoked but never defined (see the help page).:13
was invoked but never defined (see the help page).:14
was invoked but never defined (see the help page).