Syconycteris

Syconycteris
Syconycteris australis, common blossom bat, in Banksia integrifolia branch (male, temporarily in captivity in Australia).
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Chiroptera
Family: Pteropodidae
Subfamily: Macroglossinae
Genus: Syconycteris
Matschie, 1899
Type species
Macroglossus minimus var. australis
Peters, 1867
Species

Syconycteris carolinae
Syconycteris hobbit
Syconycteris australis

Syconycteris (blossom bat) is a genus of megabat in the family Pteropodidae.[1] There are three described species at present, with more likely to be added. Members of this genus are found in Indonesia, New Guinea and Australia. Their diet mainly consists of nectar and fruit, making them important for pollination and seed dispersal in their environment.

Syconycteris bats play an especially important role as pollinators for flowers that require an explosive opening such as Mucuna macrocarpa. This is where the stamen and pistill are covered until exposed by an animal. Syconycteris opens the flower by pushing their snout into the basal section between the banner and carina and then pressing their wings to open. Syconycteris bats are primary pollinators as the pollen of explosively opened flowers sticks to their fur.[2]

Syconycteris is a long tongued nectar feeding bat. They are small compared to other megabats and swarm around tall fruit trees.[3] Like closely related Macroglossus species, their vocalizations consist of a long series of similar trill like bursts with high repetition rate and small changes in dominant frequency. They vocalize when distressed and when fighting against other bats over food.[4] The similarity to the echolocating bat Rousettus has led to hypthotheses that Syconycteris is also capable of echolocation.[4]

The Etolo tribe of New Guinea will sometimes include Syconycteris bats in their diet, along with other bats.[5]

Syconycteris is unique among megabats bats because they do not produce spats. Spats are created by slow feeding bats that chew and swallow the juices of their food while pressing the pulp and seeds into a spat or wadge which is then spit out. This makes them more effective seed dispersers because seeds in spats tend to travel less distance and are more vulnerable to fungi compared to seeds that are defecated like those eaten by Syconycteris.[6]

  1. ^ Wilson, D. E.; Reeder, D. M., eds. (2005). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Johns Hopkins University Press. ISBN 978-0-8018-8221-0. OCLC 62265494.
  2. ^ KOBAYASHI, Shun; IZAWA, Masako; DENDA, Tetsuo; MASHIBA, Shigehiko; DOI, Teruo; IWAMOTO, Toshitaka (2015). "Appearance of New Relationship between Mucuna macrocarpa (Fabaceae) and Japanese Macaque as Pollination Partner: Indirect Effect of Afforestation Policy". Primate Research. 31 (1): 39–47. doi:10.2354/psj.31.003. ISSN 0912-4047.
  3. ^ Archbold, Richard. (1933). Richard Archbolds journal : First Archbold Expedition to New Guinea. [s.n.] doi:10.5962/bhl.title.136011.
  4. ^ a b Schoeman, M. Corrie; Goodman, Steven M. (December 2012). "Vocalizations in the Malagasy Cave-Dwelling Fruit Bat,Eidolon dupreanum: Possible Evidence of Incipient Echolocation?". Acta Chiropterologica. 14 (2): 409–416. doi:10.3161/150811012x661729. ISSN 1508-1109. S2CID 86613252.
  5. ^ Dwyer, Peter D. (August 1985). "The contribution of non‐domesticated animals to the diet of Etolo, southern highlands province, Papua New Guinea". Ecology of Food and Nutrition. 17 (2): 101–115. doi:10.1080/03670244.1985.9990885. ISSN 0367-0244.
  6. ^ Muscarella, Robert; Fleming, Theodore H. (November 2007). "The Role of Frugivorous Bats in Tropical Forest Succession". Biological Reviews. 82 (4): 573–590. CiteSeerX 10.1.1.472.9703. doi:10.1111/j.1469-185x.2007.00026.x. ISSN 1464-7931. PMID 17944618. S2CID 2504882.