This article needs additional citations for verification. (December 2021) |
A joint Politics and Economics series |
Social choice and electoral systems |
---|
Mathematics portal |
In economics and social choice, a function satisfies anonymity, neutrality, or symmetry if the rule does not discriminate between different participants ahead of time. For example, in an election, a voter-anonymous function is one where it does not matter who casts which vote, i.e. all voters' ballots are equal ahead of time. Formally, this is defined by saying the rule returns the same outcome (whatever this may be) if the votes are "relabeled" arbitrarily, e.g. by swapping votes #1 and #2.[1][2] Similarly, outcome-neutrality says the rule does not discriminate between different outcomes (e.g. candidates) ahead of time. Formally, if the labels assigned to each outcome are permuted arbitrarily, the returned result is permuted in the same way.[1][2]
Some authors reserve the term anonymity for agent symmetry and neutrality for outcome-symmetry,[1][2] but this pattern is not perfectly consistent.[3]: 75