Mathematical concept
In mathematics, a symplectic matrix is a matrix with real entries that satisfies the condition
| | (1) |
where denotes the transpose of and is a fixed nonsingular, skew-symmetric matrix. This definition can be extended to matrices with entries in other fields, such as the complex numbers, finite fields, p-adic numbers, and function fields.
Typically is chosen to be the block matrix
where is the identity matrix. The matrix has determinant and its inverse is .