In differential geometry, given a metaplectic structure on a -dimensional symplectic manifold the symplectic spinor bundle is the Hilbert space bundle associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group — the two-fold covering of the symplectic group — gives rise to an infinite rank vector bundle; this is the symplectic spinor construction due to Bertram Kostant.[1]
A section of the symplectic spinor bundle is called a symplectic spinor field.