T-matrix method

The Transition Matrix Method (T-matrix method, TMM) is a computational technique of light scattering by nonspherical particles originally formulated by Peter C. Waterman (1928–2012) in 1965.[1][2] The technique is also known as null field method and extended boundary condition method (EBCM).[3] In the method, matrix elements are obtained by matching boundary conditions for solutions of Maxwell equations. It has been greatly extended to incorporate diverse types of linear media occupying the region enclosing the scatterer.[4] T-matrix method proves to be highly efficient and has been widely used in computing electromagnetic scattering of single and compound particles.[5]

  1. ^ Waterman, P.C. (1965). "Matrix formulation of electromagnetic scattering". Proceedings of the IEEE. 53 (8). Institute of Electrical and Electronics Engineers (IEEE): 805–812. doi:10.1109/proc.1965.4058. ISSN 0018-9219.
  2. ^ Waterman, Peter C. (1971). "Symmetry, unitarity, and geometry in electromagnetic scattering". Physical Review D. 3 (4): 825–839. Bibcode:1971PhRvD...3..825W. doi:10.1103/PhysRevD.3.825.
  3. ^ Mishchenko, Michael I.; Travis, Larry D.; Mackowski, Daniel W. (1996). "T-matrix computations of light scattering by nonspherical particles: A review". Journal of Quantitative Spectroscopy and Radiative Transfer. 55 (5). Elsevier BV: 535–575. doi:10.1016/0022-4073(96)00002-7. ISSN 0022-4073.
  4. ^ Lakhtakia, Akhlesh (2018). The Ewald–Oseen Extinction Theorem and the Extended Boundary Condition Method, in: The World of Applied Electromagnetics. Cham, Switzerland: Springer. doi:10.1007/978-3-319-58403-4_19. ISBN 978-3-319-58403-4.
  5. ^ Mishchenko, Michael I.; Travis, Larry D.; Lacis, Andrew A. (2002). Scattering, Absorption, and Emission of Light by Small Particles. Cambridge, UK: Cambridge University Press. ISBN 9780521782524.