In mathematics, the Tamagawa number of a semisimple algebraic group defined over a global field k is the measure of , where is the adele ring of k. Tamagawa numbers were introduced by Tamagawa (1966), and named after him by Weil (1959).
Tsuneo Tamagawa's observation was that, starting from an invariant differential form ω on G, defined over k, the measure involved was well-defined: while ω could be replaced by cω with c a non-zero element of , the product formula for valuations in k is reflected by the independence from c of the measure of the quotient, for the product measure constructed from ω on each effective factor. The computation of Tamagawa numbers for semisimple groups contains important parts of classical quadratic form theory.