Technological applications of superconductivity include:
- the production of sensitive magnetometers based on SQUIDs (superconducting quantum interference devices)
- fast digital circuits (including those based on Josephson junctions and rapid single flux quantum technology),
- powerful superconducting electromagnets used in maglev trains, magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) machines, magnetic confinement fusion reactors (e.g. tokamaks), and the beam-steering and focusing magnets used in particle accelerators
- low-loss power cables
- RF and microwave filters (e.g., for mobile phone base stations, as well as military ultra-sensitive/selective receivers)
- fast fault current limiters
- high sensitivity particle detectors, including the transition edge sensor, the superconducting bolometer, the superconducting tunnel junction detector, the kinetic inductance detector, and the superconducting nanowire single-photon detector
- railgun and coilgun magnets
- electric motors and generators[1]
- ^ Fischer, Martin. New Path to 10 MW Renewable Energy World, 12 October 2010. Retrieved: 14 October 2010.