There are eight uniform tilings that can be based from the regular hexagonal tiling (or the dual triangular tiling). Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 which are topologically distinct. The truncated triangular tiling is topologically identical to the hexagonal tiling.
Uniform hexagonal/triangular tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [6,3], (*632) | [6,3]+ (632) |
[6,3+] (3*3) | |||||||||
{6,3} | t{6,3} | r{6,3} | t{3,6} | {3,6} | rr{6,3} | tr{6,3} | sr{6,3} | s{3,6} | |||
63 | 3.122 | (3.6)2 | 6.6.6 | 36 | 3.4.6.4 | 4.6.12 | 3.3.3.3.6 | 3.3.3.3.3.3 | |||
Uniform duals | |||||||||||
V63 | V3.122 | V(3.6)2 | V63 | V36 | V3.4.6.4 | V.4.6.12 | V34.6 | V36 |
The hexagonal/triangular tilings also exist as uniform Wythoff constructions in a half symmetry form, in the p3m1, [3[3]], (*333) symmetry group:
Uniform hexagonal/triangular tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: h[6,3] = [3[3]], (*333) | [3[3]]+, (333) | ||||||||||
r{3[3]} | t{3[3]} | {3[3]} | h{6,3} = {3[3]} | h2{6,3} = r{3[3]} | s{3[3]} | ||||||
= |
= |
= |
= or |
= or |
= | ||||||
3.6.3.6 | 6.6.6 | 3.3.3.3.3.3 | 3.3.3.3.3.3 | 3.6.3.6 | 3.3.3.3.3.3 |
Tables: