Tetragonal disphenoid honeycomb

Tetragonal disphenoid tetrahedral honeycomb
Type convex uniform honeycomb dual
Coxeter-Dynkin diagram
Cell type
Tetragonal disphenoid
Face types isosceles triangle {3}
Vertex figure
tetrakis hexahedron
Space group Im3m (229)
Symmetry [[4, 3, 4]]
Coxeter group , [4, 3, 4]
Dual Bitruncated cubic honeycomb
Properties cell-transitive, face-transitive, vertex-transitive

The tetragonal disphenoid tetrahedral honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of identical tetragonal disphenoidal cells. Cells are face-transitive with 4 identical isosceles triangle faces. John Horton Conway calls it an oblate tetrahedrille or shortened to obtetrahedrille.[1]

A cell can be seen as 1/12 of a translational cube, with its vertices centered on two faces and two edges. Four of its edges belong to 6 cells, and two edges belong to 4 cells.

The tetrahedral disphenoid honeycomb is the dual of the uniform bitruncated cubic honeycomb.

Its vertices form the A*
3
/ D*
3
lattice, which is also known as the body-centered cubic lattice.

  1. ^ Symmetry of Things, Table 21.1. Prime Architectonic and Catopric tilings of space, p. 293, 295.