There are at most a finite number of consecutive powers
In number theory, Tijdeman's theorem states that there are at most a finite number of consecutive powers. Stated another way, the set of solutions in integers x, y, n, m of the exponential diophantine equation
for exponents n and m greater than one, is finite.[1][2]
^Narkiewicz, Wladyslaw (2011), Rational Number Theory in the 20th Century: From PNT to FLT, Springer Monographs in Mathematics, Springer-Verlag, p. 352, ISBN978-0-857-29531-6