In mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface.[1] For example, when a rectangle is rotated around an axis parallel to one of its edges, then a hollow rectangle-section ring is produced. If the revolved figure is a circle, then the object is called a torus.
The term toroid is also used to describe a toroidal polyhedron. In this context a toroid need not be circular and may have any number of holes. A g-holed toroid can be seen as approximating the surface of a torus having a topological genus, g, of 1 or greater. The Euler characteristic χ of a g holed toroid is 2(1-g).[2]
The torus is an example of a toroid, which is the surface of a doughnut. Doughnuts are an example of a solid torus created by rotating a disk, and are not toroids.
Toroidal structures occur in both natural and synthetic materials.[3]