Traffic simulation or the simulation of transportation systems is the mathematical modeling of transportation systems (e.g., freeway junctions, arterial routes, roundabouts, downtown grid systems, etc.) through the application of computer software to better help plan, design, and operate transportation systems.[1] Simulation of transportation systems started in the 1950s,[2] and is an important area of discipline in traffic engineering and transportation planning today. Various national and local transportation agencies, academic institutions and consulting firms use simulation to aid in their management of transportation networks.
Simulation in transportation is important because it can study models too complicated for analytical or numerical treatment, can be used for experimental studies, can study detailed relations that might be lost in analytical or numerical treatment and can produce attractive visual demonstrations of present and future scenarios.
To understand simulation, it is important to understand the concept of system state, which is a set of variables that contains enough information to describe the evolution of the system over time.[3] System state can be either discrete or continuous. Traffic simulation models are classified according to discrete and continuous time, state, and space.[4]