Transcendental equation

John Herschel, Description of a machine for resolving by inspection certain important forms of transcendental equations, 1832

In applied mathematics, a transcendental equation is an equation over the real (or complex) numbers that is not algebraic, that is, if at least one of its sides describes a transcendental function.[1] Examples include:

A transcendental equation need not be an equation between elementary functions, although most published examples are.

In some cases, a transcendental equation can be solved by transforming it into an equivalent algebraic equation. Some such transformations are sketched below; computer algebra systems may provide more elaborated transformations.[a]

In general, however, only approximate solutions can be found.[2]

  1. ^ I.N. Bronstein and K.A. Semendjajew and G. Musiol and H. Mühlig (2005). Taschenbuch der Mathematik (in German). Frankfurt/Main: Harri Deutsch. Here: Sect.1.6.4.1, p.45. The domain of equations is left implicit throughout the book.
  2. ^ Bronstein et al., p.45-46


Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).