For two space curves with a common point , the curve is shifted such that point is moving on . By this procedure curve generates a surface: the translation surface.
If both curves are contained in a common plane, the translation surface is planar (part of a plane). This case is generally ignored.
The hyperbolic paraboloid can be generated by (parabola) and (downwards open parabola).
Translation surfaces are popular in descriptive geometry[1][2] and architecture,[3] because they can be modelled easily.
In differential geometry minimal surfaces are represented by translation surfaces or as midchord surfaces (s. below).[4]
^H. Brauner: Lehrbuch der Konstruktiven Geometrie, Springer-Verlag, 2013,ISBN3709187788, 9783709187784, p. 236
^Fritz Hohenberg: Konstruktive Geometrie in der Technik, Springer-Verlag, 2013, ISBN3709181488, 9783709181485, p. 208
^Hans Schober: Transparente Schalen: Form, Topologie, Tragwerk, John Wiley & Sons, 2015, ISBN343360598X, 9783433605981, S. 74
^Wilhelm Blaschke, Kurt Reidemeister: Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie II: Affine Differentialgeometrie, Springer-Verlag, 2013,ISBN364247392X, 9783642473920, p. 94