Transposition often results in duplication of the same genetic material. The discovery of mobile genetic elements earned Barbara McClintock a Nobel Prize in 1983.[3] Further research into transposons has potential for use in gene therapy, and the finding of new drug targets in personalized medicine. The vast number of variables in the transposon makes data analytics difficult but combined with other sequencing technologies significant advances may be made in the understanding and treatment of disease.[4]
Transposable elements make up about half of the genome in a eukaryotic cell, accounting for much of human genetic diversity.[4] Although TEs are selfish genetic elements, many are important in genome function and evolution.[5] Transposons are also very useful to researchers as a means to alter DNA inside a living organism.
There are at least two classes of TEs: Class I TEs or retrotransposons generally function via reverse transcription, while Class II TEs or DNA transposons encode the protein transposase, which they require for insertion and excision, and some of these TEs also encode other proteins.[6]
^Makałowski W, Gotea V, Pande A, Makałowska I (2019). "Transposable Elements: Classification, Identification, and Their Use as a Tool for Comparative Genomics". In Anisimova M (ed.). Evolutionary Genomics. Methods in Molecular Biology. Vol. 1910. New York, NY: Humana. pp. 185–186. doi:10.1007/978-1-4939-9074-0_6. ISBN978-1-4939-9074-0. PMID31278665. S2CID195814061.