| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
Trifluoroacetic acid | |||
Other names
2,2,2-Trifluoroacetic acid
2,2,2-Trifluoroethanoic acid Perfluoroacetic acid Trifluoroethanoic acid TFA | |||
Identifiers | |||
3D model (JSmol)
|
|||
742035 | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.000.846 | ||
2729 | |||
PubChem CID
|
|||
RTECS number |
| ||
UNII | |||
CompTox Dashboard (EPA)
|
|||
| |||
| |||
Properties | |||
C2HF3O2 | |||
Molar mass | 114.023 g·mol−1 | ||
Appearance | colorless liquid | ||
Odor | Pungent/Vinegar | ||
Density | 1.489 g/cm3, 20 °C | ||
Melting point | −15.4 °C (4.3 °F; 257.8 K) | ||
Boiling point | 72.4 °C (162.3 °F; 345.5 K) | ||
miscible | |||
Vapor pressure | 0.0117 bar (1.17 kPa) at 20 °C[1] | ||
Acidity (pKa) | 0.52 [2] | ||
Conjugate base | trifluoroacetate | ||
-43.3·10−6 cm3/mol | |||
Hazards | |||
Occupational safety and health (OHS/OSH): | |||
Main hazards
|
Highly corrosive | ||
GHS labelling: | |||
Danger | |||
H314, H332, H412 | |||
P260, P261, P264, P271, P273, P280, P301+P330+P331, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P310, P312, P321, P363, P405, P501 | |||
NFPA 704 (fire diamond) | |||
Safety data sheet (SDS) | External MSDS | ||
Related compounds | |||
Related perfluorinated acids
|
Heptafluorobutyric acid Perfluorooctanoic acid Perfluorononanoic acid | ||
Related compounds
|
Acetic acid Trichloroacetic acid | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Trifluoroacetic acid (TFA) is a synthetic organofluorine compound with the chemical formula CF3CO2H. It is a haloacetic acid, with all three of the acetyl group's hydrogen atoms replaced by fluorine atoms. It is a colorless liquid with a vinegar-like odor. TFA is a stronger acid than acetic acid, having an acid ionisation constant, Ka, that is approximately 34,000 times higher,[3] as the highly electronegative fluorine atoms and consequent electron-withdrawing nature of the trifluoromethyl group weakens the oxygen-hydrogen bond (allowing for greater acidity) and stabilises the anionic conjugate base. TFA is commonly used in organic chemistry for various purposes.