Truncated cuboctahedron | |
---|---|
(Click here for rotating model) | |
Type | Archimedean solid Uniform polyhedron |
Elements | F = 26, E = 72, V = 48 (χ = 2) |
Faces by sides | 12{4}+8{6}+6{8} |
Conway notation | bC or taC |
Schläfli symbols | tr{4,3} or |
t0,1,2{4,3} | |
Wythoff symbol | 2 3 4 | |
Coxeter diagram | |
Symmetry group | Oh, B3, [4,3], (*432), order 48 |
Rotation group | O, [4,3]+, (432), order 24 |
Dihedral angle | |
References | U11, C23, W15 |
Properties | Semiregular convex zonohedron |
Colored faces |
4.6.8 (Vertex figure) |
Disdyakis dodecahedron (dual polyhedron) |
Net |
In geometry, the truncated cuboctahedron or great rhombicuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry (equivalently, 180° rotational symmetry), the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.