Tube furnace

Tube furnace being used during synthesis of aluminium chloride using HCl and aluminium

A tube furnace is an electric heating device used to conduct syntheses and purifications of inorganic compounds and occasionally in organic synthesis. One possible design consists of a cylindrical cavity surrounded by heating coils that are embedded in a thermally insulating matrix. Temperature can be controlled via feedback from a thermocouple. More elaborate tube furnaces have two (or more) heating zones useful for transport experiments. Some digital temperature controllers provide an RS-232 interface, and permit the operator to program segments for uses like ramping, soaking, sintering, and more. Advanced materials in the heating elements, such as molybdenum disilicide (MoSi2) offered in certain models can now produce working temperatures up to 1800 °C. This facilitates more sophisticated applications.[1] Common material for the reaction tubes include alumina, Pyrex, and fused quartz, or in the case of corrosive materials molybdenum or tungsten tubes can be used.

The tube furnace was invented in the first decade of the 20th century and was originally used to manufacture ceramic filaments for Nernst lamps and glowers.[2]

  1. ^ J. D. Corbett "Synthesis of Solid-State Materials" in Solid State Chemistry: Techniques, A. K. Cheetham and P. Day, Eds. Clarendon, Oxford, 1987. ISBN 0-19-855165-7.
  2. ^ Harker, J. A. (December 1905). "On a New Type of Electric Furnace, with a Redetermination of the Melting-Point of Platinum". Proceedings of the Royal Society A. 76 (507): 235–249. Bibcode:1905RSPSA..76..235H. doi:10.1098/rspa.1905.0023.