In information theory, turbo codes (originally in French Turbocodes) are a class of high-performance forward error correction (FEC) codes developed around 1990–91, but first published in 1993. They were the first practical codes to closely approach the maximum channel capacity or Shannon limit, a theoretical maximum for the code rate at which reliable communication is still possible given a specific noise level. Turbo codes are used in 3G/4G mobile communications (e.g., in UMTS and LTE) and in (deep space) satellite communications as well as other applications where designers seek to achieve reliable information transfer over bandwidth- or latency-constrained communication links in the presence of data-corrupting noise. Turbo codes compete with low-density parity-check (LDPC) codes, which provide similar performance. Until the patent for turbo codes expired,[1] the patent-free status of LDPC codes was an important factor in LDPC's continued relevance.[2]
The name "turbo code" arose from the feedback loop used during normal turbo code decoding, which was analogized to the exhaust feedback used for engine turbocharging. Hagenauer has argued the term turbo code is a misnomer since there is no feedback involved in the encoding process.[3]