Theoretical element | ||||||
---|---|---|---|---|---|---|
Unbiunium | ||||||
Pronunciation | /ˌuːnbaɪˈuːniəm/ | |||||
Alternative names | eka-actinium, superactinium | |||||
Unbiunium in the periodic table | ||||||
| ||||||
Atomic number (Z) | 121 | |||||
Group | g-block groups (no number) | |||||
Period | period 8 (theoretical, extended table) | |||||
Block | g-block | |||||
Electron configuration | [Og] 8s2 8p1 (predicted)[1] | |||||
Electrons per shell | 2, 8, 18, 32, 32, 18, 8, 3 (predicted) | |||||
Physical properties | ||||||
Phase at STP | unknown | |||||
Atomic properties | ||||||
Oxidation states | common: (none) (+3)[1][2] | |||||
Ionization energies |
| |||||
Other properties | ||||||
CAS Number | 54500-70-8 | |||||
History | ||||||
Naming | IUPAC systematic element name | |||||
Unbiunium, also known as eka-actinium or element 121, is a hypothetical chemical element; it has symbol Ubu and atomic number 121. Unbiunium and Ubu are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to be the first of the superactinides, and the third element in the eighth period. It has attracted attention because of some predictions that it may be in the island of stability. It is also likely to be the first of a new g-block of elements.
Unbiunium has not yet been synthesized. It is expected to be one of the last few reachable elements with current technology; the limit could be anywhere between element 120 and 124. It will also likely be far more difficult to synthesize than the elements known so far up to 118, and still more difficult than elements 119 and 120. The teams at RIKEN in Japan and at the JINR in Dubna, Russia have indicated plans to attempt the synthesis of element 121 in the future after they attempt elements 119 and 120.
The position of unbiunium in the periodic table suggests that it would have similar properties to lanthanum and actinium; however, relativistic effects may cause some of its properties to differ from those expected from a straight application of periodic trends. For example, unbiunium is expected to have a s2p valence electron configuration, instead of the s2d of lanthanum and actinium or the s2g expected from the Madelung rule, but this is not predicted to affect its chemistry much. It would on the other hand significantly lower its first ionization energy beyond what would be expected from periodic trends.