Universal neonatal hearing screening

Universal neonatal hearing screening
A newborn infant undergoes a hearing screening.
Purposeearly intervention/identification of deaf or hard-of-hearing infants

Universal neonatal hearing screening (UNHS), which is part of early hearing detection and intervention (EHDI) programmes, refer to those services aimed at screening hearing of all newborns, regardless of the presence of a risk factor for hearing loss. UNHS is the first step in the EHDI program which indicates whether a newborn requires further audiological assessment to determine the presence or absence of permanent hearing loss. Newborn hearing screening uses objective testing methods (usually otoacoustic emission (OAE) testing or automated auditory brainstem response (ABR) testing) to screen the hearing of all newborns in a particular target region, regardless of the presence or absence of risk factors. Even among developed countries, until the 1990s, it could take years for hearing-impaired child to be diagnosed and to benefit from a health intervention and amplification. This delay still can happen in developing countries.[1] If children are not exposed to sounds and language during their first years of life because of a hearing loss, they will have difficulty in developing spoken or signed language; cognitive development and social skills could also be affected.[2] This screening separates children into two groups—those with a high index of suspicion (more likely to have permanent congenital hearing loss) and those with a low index of suspicion (less likely to have permanent congenital hearing loss). Those in the first group are referred for diagnostic testing.[3]

Newborn hearing screening has been implemented in many regions worldwide since the early 2000s as it aims to reduce the age of detection for hearing loss—meaning that diagnosed children can receive early intervention, which is more effective because the brain's ability to learn language (spoken, cued, or signed) reduces as the child ages.[4] Children born with permanent congenital hearing loss have historically performed worse educationally, had poorer language acquisition, social functioning and vocational choices than their hearing peers.[5][6][7][8]

  1. ^ McPherson B (2012). "Newborn hearing screening in developing countries: needs & new directions". The Indian Journal of Medical Research. 135 (2): 152–3. PMC 3336843. PMID 22446854.
  2. ^ "NIH Fact Sheets: Newborn Hearing Screening". U.S. National Institutes of Health. Retrieved 2019-03-01.
  3. ^ Wilson JMG; Jungner G (1968). "Principles and practice of screening for disease". World Health Organization. Retrieved 6 March 2019.
  4. ^ Downs MP, Yoshinaga-Itano C (February 1999). "The efficacy of early identification and intervention for children with hearing impairment". Pediatric Clinics of North America. 46 (1): 79–87. doi:10.1016/S0031-3955(05)70082-1. PMID 10079791.
  5. ^ Mayberry RI, Lock E, Kazmi H (May 2002). "Linguistic ability and early language exposure". Nature. 417 (6884): 38. doi:10.1038/417038a. PMID 11986658. S2CID 4313378.
  6. ^ Johnson JS, Newport EL (June 1991). "Critical period effects on universal properties of language: the status of subjacency in the acquisition of a second language". Cognition. 39 (3): 215–58. doi:10.1016/0010-0277(91)90054-8. PMID 1841034. S2CID 13278854.
  7. ^ Yoshinaga-Itano C (2003). "From Screening to Early Identification and Intervention: Discovering Predictors to Successful Outcomes for Children With Significant Hearing Loss". Journal of Deaf Studies and Deaf Education. 8 (1): 11–30. doi:10.1093/deafed/8.1.11. PMID 15448044.
  8. ^ Neville H, Bavelier D (2002). "Human brain plasticity: evidence from sensory deprivation and altered language experience". Plasticity in the Adult Brain: From Genes to Neurotherapy. Progress in Brain Research. Vol. 138. pp. 177–88. doi:10.1016/S0079-6123(02)38078-6. ISBN 9780444509819. PMID 12432770.