Welcome to the Wikipedia mathematics reference desk
|
---|
How to ask a question
|
If you have no problem following these guidelines, you can go ahead and ask a new question by clicking on this link. |
How to answer a question
|
Reference desk navigator
|
Mathematics desk |
Computers and technology desk |
Language desk |
Humanities desk |
Science desk |
Miscellaneous desk |
Archives |
This template must be substituted. Replace {{Reference desk navigation
with {{subst:Reference desk navigation
.
|- ! width="20%" align="left" | < October 12 ! width="25%" align="center"|<<Sep | October | Nov>> ! width="20%" align="right" |October 14 > |}
| ||||||||
The page you are currently viewing is an archive page. While you can leave answers for any questions shown below, please ask new questions at one of the pages linked to above. | ||||||||
What does the 2D fourier transform of a penrose tiling look like? --HappyCamper 12:27, 13 October 2006 (UTC)[reply]
{{Reference desk navigation
with {{subst:Reference desk navigation
.|- ! width="20%" align="left" | < October 13 ! width="25%" align="center"|<<Sep | October | Nov>> ! width="20%" align="right" |October 15 > |}
| ||||||||
The page you are currently viewing is an archive page. While you can leave answers for any questions shown below, please ask new questions at one of the pages linked to above. | ||||||||
I have a task to complete which is to design a Turing Machine which will halt on all inputs from a certain language and halt and accept only on inputs from a particular subset of this language. I should mention that in the course I'm taking we've taken the option of considering a TM as a set of rules of the form {READ STATE, READ SYMBOL, CHANGE TO STATE, CHANGE TO SYMBOL, GO LEFT OR RIGHT OR PAUSE} with a "start" state and an "accept" state, the machine starting on the "left-most" letter of the input word, and the machine halting without accepting if it encounters a symbol in a certain state for which there does not exist a rule.
Anyway, I've completed the task, and designed a TM. I'm happy with it - I think it's quite cute in fact. And I should think anyone reading my rules with the accompanying commentary would be happy too. What I would like to do is make a systematic and complete justification of my TM - i.e. prove that it does exactly what it's meant to. The trouble is, when I start writing about it I end up with paragraph upon paragraph of flowery prose and going round in circles. This is silly. It's a simple machine really and is dealing with a simply defined subset of a simple language.
So, my question is this: does there exist a standard approach to justifying a machine of this type which would be concise and rigorous? It's bugging me since I love my machine and it clearly (to me) does its job but I end up going round in circles trying to justify it.
Thanks --87.194.21.177 01:04, 14 October 2006 (UTC)[reply]
Thanks guys. I don't know about regular languages - maybe I'll dip a toe. Meanwhile I think I'll start thinking along the other lines suggested. I think that, as Robert says above, "writing proofs is hard" is the essential truth I am struggling with as per usual. Thanks again. --87.194.21.177 15:37, 14 October 2006 (UTC)[reply]
I understand that the Elasticity of substitution is the % change in x/y over the % change in the rate of technical substitution, or MRS, but then I become confused when it is simplified to: d ln x/y over d ln f(x)/f(y).
Could someone state this in terms of operations, or what I should calculate if all I have is their production function and conditional input demand functions? Thanks, ChowderInopa 02:03, 14 October 2006 (UTC)[reply]
Lambiam, you are right, the bottom is the partial derivatives of the utility function, my bad. I'm still not understanding though...
I am taking the derivative of the ln(x/y) with respect to what? and then, I am dividing this by the derivative of the ln of the ratio of the partial derivatives of the Utility function??? Help! ChowderInopa 23:57, 14 October 2006 (UTC)[reply]
hello.can you pls give me instant tricks of solving permutations...
I am learning about linear vector spaces at university at the moment, and was wondering about slightly odd bases, such as {sin(t), cos(t)}. What are the coordinates of the function f(t) = 3 sin(t) + 5 cos(t) with respect to these basis {sin(t), cos(t)}, for example. Is the answer simply (3,5)? Batmanand | Talk 13:27, 14 October 2006 (UTC)[reply]
d2/dt2 * ß = H * d/dx * ß, Solve for H205.188.116.136 14:36, 14 October 2006 (UTC)[reply]
Hi:
I am sitting on my desk, trying to figure out the following statistics problem: if the alpha level increases power also does. Now, I wonder whether power can be less than the alpha level for a hypothesis test. I think it cannot be less as they are somewhat related and depend on each other. But I am not 100% sure. Does anyone know anything that would illuminate my mind and refresh my brain cells a little? I would be thrilled. Thanks much. Hersheysextra 16:15, 14 October 2006 (UTC)[reply]
There is a definition for e in wikipedia. Assume the following.
y=f(x); y=e^x; y'=x(e^(x-1));
here, acceleration of y is always equal to velocity of x. Does this point that - acceleration of y is equal to velocity of x - hold good for only e or does that hold good for all integers?
When it was first invented ? 124.109.18.18 20:17, 14 October 2006 (UTC)[reply]
{{Reference desk navigation
with {{subst:Reference desk navigation
.|- ! width="20%" align="left" | < October 14 ! width="25%" align="center"|<<Sep | October | Nov>> ! width="20%" align="right" |October 16 > |}
| ||||||||
The page you are currently viewing is an archive page. While you can leave answers for any questions shown below, please ask new questions at one of the pages linked to above. | ||||||||
Where is the forth dimension's axis? I'm refering to the spatial dimension, not time. THL 14:56, 15 October 2006 (UTC)[reply]
When it comes to math, I am very blue collar. I haven't taken anything higher than Algebra 3/4, and I got a C in that. I'm not a genius. THL 20:36, 15 October 2006 (UTC)[reply]
Hello, is there anywhere I could find a quite complete list of theorems in geometry (well, euclidean geometry would suffice). I looked at geometry, euclidean geometry and on pages about Hilbert's and other's sets of axioms, but couldn't find a list of theorems. I'm not really looking for very complicated theorems, just things like that the diagonals of a square intersect perpendicularily (well not just THAT simple actually :p). I would also appreciate if someone could point out where I could find a page that would compare analytic geometry and "traditional" geometry, by saying how one would state theorems and axioms in one or the other. Thanks --Xedi 19:45, 15 October 2006 (UTC)[reply]
HOW CAN I ADD AUTO TIME TO MY CALC. I WOULD LIKE TO SIGN PEOPLE IN AND OUT AND KNOW HOW LONG THE WAIT WAS BY CLICKING A CLOCK ICON. PEGGY [email removed] —Preceding unsigned comment added by 68.88.141.66 (talk • contribs)
And most importantly, we can't answer your question unless you:
--Ķĩřβȳ♥ŤįɱéØ 21:30, 15 October 2006 (UTC)[reply]
This template must be substituted. Replace{{Reference desk navigation
with {{subst:Reference desk navigation
.|- ! width="20%" align="left" | < October 15 ! width="25%" align="center"|<<Sep | October | Nov>> ! width="20%" align="right" |October 17 > |}
| ||||||||
The page you are currently viewing is an archive page. While you can leave answers for any questions shown below, please ask new questions at one of the pages linked to above. | ||||||||
From what I've been able to gather, these tables were very incomplete, offering only a small percentage of what would have made up a complete and adequate set (given the base, etc.). Yet histories state that they were instantly very useful for all kinds of important calculations. So, what is an actual example of calculations for which Napier's tables were complete and adequate and used? I'm guessing that either
Wareh 02:43, 16 October 2006 (UTC)[reply]
So in my math class, we're doing factorials. One of the homework problems was "a?" My friend says it means a wants to be n. Nobody knows what it actually means. Therefore, I ask you; WTF does that mean? I'm not asking for the problem to be solved, just for someone to tell me what the question mark is supposed to be.
Thank you. 64.198.112.210 15:34, 16 October 2006 (UTC)[reply]
This was motivated by an annoying guy in my class I hope I never have to work with again. Here's the situation, and it could be generalized, but I'll just wonder about my specific case:
In my class of 16, we've been put into 4 groups of 4 for team projects. We'll be put into different groups of 4 a few more times throughout the semester. My question is, how many partitions of the class into groups of 4 can be made such that any 2 individuals are in the same group at most once?
The best case scenario would be 5 partitions, in which case everyone would have been in a foursome once with every other classmate. It wasn't too hard to sketch out a way to get 3.
Part of my question is even how to understand this problem or put it into rigorous terms. Does it have another name? My initial naive approach is to phrase is something like how many copies of "4 x the complete graph on 4 vertices" can the complete graph on 16 vertices be broken into, but it seems like there must be something easier.
Most importantly, can I be assured I won't have to work with annoying guy for at least 3 more iterations of these classroom teams?
Thanks! - 142.110.227.162 16:05, 16 October 2006 (UTC)[reply]
I guess I wasn't clear. I want to look at "partitions" (the act of dividing the whole class into 4 groups of 4) as a whole, and consider the largest set of partitions where any group of four contains any two individuals at most once.
i.e. what's the most number of times I can partition the class before somebody, anybody, is in the same group with a person from a previous partition? (as you can see part of my problem is with notation) 142.110.227.162 17:05, 16 October 2006 (UTC)[reply]
I think three is probably it. It is easy to see that by relabelling the students, the first two partitions can always be written (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16) and (1 5 9 13)(2 6 10 14)(3 7 11 15)(4 8 12 16). There are 16×3×2 labellings that will give these for the first two partitions (16 ways to choose 1, 3 ways to choose 2, 2 ways to choose 3, 1 way to choose 4 through 16). In particular, you can permute your labelling of 1 2 3 4. I think you can show that these 4×3×2 relabellings are sufficient to put the third partition into the form (1 6 11 16)(2 7 12 13)(3 8 9 14)(4 5 10 15). It is easy to then prove that no additional partition is possible. Probably a cuter proof is, though. –Joke 20:40, 16 October 2006 (UTC)[reply]
{01234, 56789, ABCDE, FGHIJ, KLMNO}, {05AFK, 16BGL, 27CHM, 38DIN, 49EJO}, {06CIO, 17DJK, 28EFL, 39AGM, 45BHN}, {07EGN, 18AHO, 29BIK, 35CJL, 46DFM}, {08BJM, 19CFN, 25DGO, 36EHK, 47AIL}, {09DHL, 15EIM, 26AJN, 37BFO, 48CGK}
Thanks for playing around with this and for your observations! (the obvious questions start popping up ... for a maximal n by n partition system, is n prime a necessary condition? for n m-groups, is the case n > m too easy and n < m too hard as far as achieving the maximum? I guess for n < m that's obvious by the pigeonhole principle.... are all maximal partitionings isomorphic? for that matter, are all partitionings isomorphic?) 68.144.123.4 01:09, 17 October 2006 (UTC)[reply]
i am a standard FIFTH student. We have been assigned to make a Project Report on ROMAN NUMERALS I have found some answers to the CONTENT LIST of the Project. Please help me find answers to -- Uses of Roman Numerals; advantages & Disadvantages
Syed Bilal, Std V (E), Fr Agnel School (Vashi)
I buy something at a store, I pay cash, and I am given in my change a 20-cent coin dated 1981. I want to come up with reasonable estimates of (a) how many times this coin has changed hands since it was first issued 25 years ago, and (b) how likely is it that I've previously had it myself during that time. I assume the answer would have to include variables such as: the number of 20-cent coins issued in 1986; the population of my country over a certain age (which itself has varied over that period); the changing relationship people are having with cash vs. credit; and surely other factors that I can't think of. Any suggestions would be welcome. JackofOz 07:53, 17 October 2006 (UTC)[reply]
penny and later it returns in change.Edison 23:33, 18 October 2006 (UTC)[reply]
Given a tetrahedron ABCD, with centre at O (i.e. AO = BO = CO = DO), then what is the angle AOB? (O exsists and is unique)
I know it's *roughly* 72 degrees [EDIT: should've been 108] (which is the interior angle of a pentagon) for the following reason: at school, our chemistry department had an organic molecule construction kit. An atom of carbon was reperesented by a four-pronged star (so the ends of the star formed a tetrahdeon) and bonds / other elemnts were represented by little plastic tubes. Having joined five into a planar ring (cyclopentane), I then realised you could make up a dodecahedron using entirely carbon molecules... which I duely did. If the straws had been straight, then the above-mentioned angle would be exactly the interior angle of a pentagon. However, the straws were bent slightly outward, meaning angle AOB is actually slightly more than 72 degrees [EDIT: should've been 108]. So, what *is* the angle? Tompw 11:29, 17 October 2006 (UTC)[reply]
Hi!
This doesn't appear anywhere in my text book, but I was wondering, would the integral of e^g(x) equal (e^g(x))/g'(x)+c? Thanks, --Fir0002 11:55, 17 October 2006 (UTC)[reply]
I spent 15 minutes trying to find all the cubes in that diagram on the Hypercube page just for fun. I colored each wireframe differently. Did I get them all? I'm concerned about the orange cube and the grey cube.. they don't quite match up and the cubes next to each other seem to make an impossible shape. Also should the top four points and the bottom four points be considered opposite faces of another cube?--frothT C 19:28, 17 October 2006 (UTC)[reply]
I know that in physics the third derivative corresponds to a "jerk", the second derivative corresponds to acceleration, the derivative corresponds to velocity, when the function itself is position. But does the antiderivative of the function mean anything? --frothT C 19:11, 17 October 2006 (UTC)[reply]
I'm reading Flatland and I'm just curious.. When the narrator moves through the linear space of lineland, the king of lineland sees only a point. When the sphere moves through the planar space of flatland, the narrator sees a line of varying length. What would us three-dimensional beings see if a four-dimensional "circle" moved through our space? A circle of varying diameter? The narrator can tell that the cross-section of the sphere that's in his plane is circular by the shading of the line... how would the shading of the four-dimensional being's cross-section appear to us, and what would it look like if we walked around it? Certainly there's a concrete answer to this question and not just theory and projections on surfaces. --frothT C 21:21, 17 October 2006 (UTC)[reply]
Acountof malaria parasites in 100 field with a 2 mm oil immersion lensgave a mean of 35 parasites per field, standard deviation 11.6 (note that, although the counts are quantitive discrete, the count can be assumed to follow a normal distribution because the average is large). On counting one more filed, the pathologist found 52 parasites. Does this number lie outside the 95% reference range? What is the reference range? What is the 95% confidence hnterval for the mean of the population from which this sample count of parasites was drawn? —The preceding unsigned comment was added by 213.6.140.68 (talk • contribs) .