Wetting solutions are liquids containing active chemical compounds that minimise the distance between two immiscible phases by lowering the surface tension to induce optimal spreading. The two phases, known as an interface, can be classified into five categories, namely, solid-solid, solid-liquid, solid-gas, liquid-liquid and liquid-gas.[1]
Although wetting solutions have a long history of acting as detergents for four thousand plus years, the fundamental chemical mechanism was not fully discovered until 1913 by the pioneer McBain.[2][3] Since then, diverse studies have been conducted to reveal the underlying mechanism of micelle formation and working principle of wetting solutions, broadening the area of applications.
The addition of wetting solution to an aqueous droplet leads to the formation of a thin film due to its intrinsic spreading property. This property favours the formation of micelles which are specific chemical structures consisting of a cluster of surfactant molecules that has a hydrophobic core and a hydrophilic surface that can lower the surface tension between two different phases.[4]
In addition, wetting solutions can be further divided into four classes; non-ionic, anionic, cationic and zwitterionic.[5]
The spreading property may be examined by adding a drop of the liquid onto an oily surface. If the liquid is not a wetting solution, the droplet will remain intact. If the liquid is a wetting solution, the droplet will spread uniformly on the oily surface because the formation of the micelles lowers the surface tension of the liquid.[6]
Wetting solutions can be applied in pharmaceuticals,[7] cosmetics[8] and agriculture.[9] Albeit a number of practical uses of wetting solutions, the presence of wetting solution can be a hindrance to water purification in industrial membrane distillation.[10]
:2
was invoked but never defined (see the help page).{{cite journal}}
: Cite journal requires |journal=
(help)
:7
was invoked but never defined (see the help page).