WiFi Sensing

WiFi sensing (also referred to as WLAN sensing[1]) uses existing Wi-Fi signals to detect events or changes such as motion, gesture recognition, and biometric measurement (e.g. breathing).[2][3] WiFi sensing is a combination of Wi-Fi and radar sensing technology working in tandem to enable usage of the same Wi-Fi transceiver hardware and RF spectrum for both communication and sensing.

The applications of WiFi sensing are broad. Wi-Fi may operate in multiple frequency bands, each providing a unique range of possible use cases dependent on the physical electro-magnetic propagation properties, approved power levels, and allocated bandwidth. There are three major applications: detection (binary classification), recognition (multi-class classification), and estimation (quantity values of size, length, angle, distance, etc.).[4]

Combining communication and sensing within mobile networking technology is a large area of exploration. It is sometimes referred to as joint communications and radar/radio sensing (JCAS).[5] Combining the two technologies can leverage existing hardware and infrastructure, enable new services, and provide a higher level of interaction with networked devices (e.g. IoT and automation).  

  1. ^ IEEE Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: High Speed Physical Layer in the 5 GHZ band. doi:10.1109/IEEESTD.1999.90606. ISBN 978-0-7381-1810-9.
  2. ^ "Wi-Fi Sensing". Wireless Broadband Alliance. Archived from the original on 2021-04-04. Retrieved 2021-03-03.
  3. ^ Wi-Fi Sensing: Revolutionizing Motion Sensing with Wi-Fi technology. Semiconductor Components Industries LLC. July 2020.
  4. ^ Halperin, Daniel; Hu, Wenjun; Sheth, Anmol; Wetherall, David (2011). "Tool release". ACM SIGCOMM Computer Communication Review. 41: 53. doi:10.1145/1925861.1925870. S2CID 13561174.
  5. ^ Andrew Zhang, J.; Md Lushanur Rahman; Wu, Kai; Huang, Xiaojing; Jay Guo, Y.; Chen, Shanzhi; Yuan, Jinhong (2020). "Enabling Joint Communication and Radar Sensing in Mobile Networks -- A Survey". arXiv:2006.07559 [eess.SP].