Wind-assisted propulsion

Wind assisted propulsion is the practice of decreasing the fuel consumption of a merchant vessel through the use of sails or some other wind capture device. Sails used to be the primary means of propelling ships, but with the advent of the steam engine and the diesel engine, sails came to be used for recreational sailing only. In recent years with increasing fuel costs and an increased focus on reducing emissions, there has been increased interest in harnessing the power of the wind to propel commercial ships.

A key barrier for the implementation of any decarbonisation technology and in particular of wind-assisted ones, is frequently discussed in the academia and the industry is the availability of capital. On the one hand, shipping lenders have been reducing their commitments overall[1] while on the other hand, low-carbon newbuilds as well as retrofit projects entail higher-than-usual capital expenditure.[2][3][4] Therefore, research effort is directed towards the development of shared economy and leasing business models, where benefits from reduced consumption of fossil fuels as well as gains from carbon allowances or reduced levies are shared among users, technology providers and operators.[5][6]

  1. ^ Furber, Sophia (21 October 2019). "Global shipping finance tanks, but Greek and French banks are buoyant". Retrieved 20 November 2020.
  2. ^ Halim, Ronald; Kirstein, Lucie; Merk, Olaf; Martinez, Luis (2018-06-29). "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment". Sustainability. 10 (7): 2243. doi:10.3390/su10072243. ISSN 2071-1050.
  3. ^ Schinas, Orestis; Ross, Harm Hauke; Rossol, Tobias Daniel (2018-12-01). "Financing green ships through export credit schemes". Transportation Research Part D: Transport and Environment. 65: 300–311. doi:10.1016/j.trd.2018.08.013. ISSN 1361-9209. S2CID 116208589.
  4. ^ Schinas, Orestis (2018), "Financing Ships of Innovative Technology", Finance and Risk Management for International Logistics and the Supply Chain, Elsevier, pp. 167–192, doi:10.1016/b978-0-12-813830-4.00007-1, ISBN 978-0-12-813830-4, retrieved 2020-11-20
  5. ^ Schinas, Orestis; Metzger, Daniel (2019-04-01). "A pay-as-you-save model for the promotion of greening technologies in shipping". Transportation Research Part D: Transport and Environment. 69: 184–195. doi:10.1016/j.trd.2019.01.018. ISSN 1361-9209. S2CID 115879277.
  6. ^ Metzger, Daniel; Schinas, Orestis (2019-12-01). "Fuzzy real options and shared savings: Investment appraisal for green shipping technologies". Transportation Research Part D: Transport and Environment. 77: 1–10. doi:10.1016/j.trd.2019.09.016. ISSN 1361-9209. S2CID 208839914.