Wolff's law

Wolff's law, developed by the German anatomist and surgeon Julius Wolff (1836–1902) in the 19th century, states that bone in a healthy animal will adapt to the loads under which it is placed.[1] If loading on a particular bone increases, the bone will remodel itself over time to become stronger to resist that sort of loading.[2][3] The internal architecture of the trabeculae undergoes adaptive changes, followed by secondary changes to the external cortical portion of the bone,[4] perhaps becoming thicker as a result. The inverse is true as well: if the loading on a bone decreases, the bone will become less dense and weaker due to the lack of the stimulus required for continued remodeling.[5] This reduction in bone density (osteopenia) is known as stress shielding and can occur as a result of a hip replacement (or other prosthesis).[citation needed] The normal stress on a bone is shielded from that bone by being placed on a prosthetic implant.

  1. ^ Anahad O'Connor (October 18, 2010). "The Claim: After Being Broken, Bones Can Become Even Stronger . Julius Wolff wrote his treatises on bone after images of bone sections were described by Culmann and von Meyer". New York Times. Retrieved 2010-10-19. This concept — that bone adapts to pressure, or a lack of it — is known as Wolff's law. ... there is no evidence that a bone that breaks will heal to be stronger than it was before.
  2. ^ Frost, HM (1994). "Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians". The Angle Orthodontist. 64 (3): 175–188. PMID 8060014.
  3. ^ Ruff, Christopher; Holt, Brigitte; Trinkaus, Erik (April 2006). "Who's afraid of the big bad Wolff?: "Wolff's law" and bone functional adaptation". American Journal of Physical Anthropology. 129 (4): 484–498. doi:10.1002/ajpa.20371. PMID 16425178.
  4. ^ Stedman's Medical Dictionary (Wayback Machine PDF)
  5. ^ Wolff J. "The Law of Bone Remodeling". Berlin Heidelberg New York: Springer, 1986 (translation of the German 1892 edition)