Wormhole switching

Wormhole flow control, also called wormhole switching or wormhole routing, is a system of simple flow control in computer networking based on known fixed links. It is a subset of flow control methods called flit-buffer flow control.[1]: Chapter 13.2.1 

Switching is a more appropriate term than routing, as "routing" defines the route or path taken to reach the destination.[2][3] The wormhole technique does not dictate the route to the destination but decides when the packet moves forward from a router.

Wormhole switching is widely used in multicomputers because of its low latency and small requirements at the nodes.[3]: 376 

Wormhole routing supports very low-latency, high-speed, guaranteed delivery of packets suitable for real-time communication.[4]

  1. ^ William James Dally; Brian Towles (2004). "13.2.1". Principles and Practices of Interconnection Networks. Morgan Kaufmann Publishers, Inc. ISBN 978-0-12-200751-4.
  2. ^ John L. Hennessy and David A. Patterson (2006). "Appendix E.5". Computer Architecture: A Quantitative Approach (Fourth ed.). Morgan Kaufmann Publishers, Inc. ISBN 978-0-12-370490-0.
  3. ^ a b Mohapatra, Prasant (1998), "Wormhole Routing Techniques for Directly Connected Multicomputer Systems" (PDF), ACM Computing Surveys, 30 (3): 374–410, CiteSeerX 10.1.1.11.9098, doi:10.1145/292469.292472, S2CID 7850481
  4. ^ Sharad Sundaresan; Riccardo Bettati. "Distributed Connection Management for Real-Time Communication over Wormhole-Routed Networks". 1997.