In some cases, the name Young subgroup is used more generally for the product , where is any set partition of (that is, a collection of disjoint, nonempty subsets whose union is ).[3] This more general family of subgroups consists of all the conjugates of those under the previous definition.[4] These subgroups may also be characterized as the subgroups of that are generated by a set of transpositions.[5]
^Sagan, Bruce (2001), The Symmetric Group (2 ed.), Springer-Verlag, p. 54
^Jones, Andrew R. (1996), "A Combinatorial Approach to the Double Cosets of the Symmetric Group with respect to Young Subgroups", European Journal of Combinatorics, 17 (7): 647–655, doi:10.1006/eujc.1996.0056
^Douvropoulos, Theo; Lewis, Joel Brewster; Morales, Alejandro H. (2022), "Hurwitz Numbers for Reflection Groups I: Generatingfunctionology", Enumerative Combinatorics and Applications, 2 (3): Article #S2R20, arXiv:2112.03427, doi:10.54550/ECA2022V2S3R20