Conjunto no medible

En matemáticas, un conjunto no medible es un conjunto al que no se puede asignar un "tamaño" con significado. La existencia matemática de tales conjuntos se interpreta para dar información de las nociones de longitud, área y volumen en teoría de conjuntos formal.

La noción de un conjunto no medible ha sido fuente de gran controversia desde su introducción. Históricamente, esto llevó a Borel y Kolmogórov a formular la teoría de probabilidad en conjuntos limitados a ser medibles. Los conjuntos medibles sobre la recta son uniones e intersecciones iteradas de intervalos (llamados conjuntos de Borel) más-menos conjuntos de medida nula. Estos conjuntos son lo bastante amplios para incluir toda definición concebible de un conjunto que se use en matemática estándar, pero se requiere mucho formalismo para probar que un conjunto es medible.

En 1970, Solovay construyó el modelo de Solovay, que demuestra que es consistente con la teoría de conjuntos estándar, excluyendo el axioma de elección, que todos los subconjuntos de los reales sean medibles.