Flavonoide

 
Flavona

Flavona
Nombre IUPAC
2-Fenil-cromen-4-ona
General
Otros nombres 2-Fenilcromona; fenil-4-H-1-benzopiran-4-ona
Fórmula molecular C15H10O2
Identificadores
Número CAS 525-82-6[1]
ChEBI 72544
O=C1C=C(OC2=C1C=CC=C2)C3=CC=CC=C3
Propiedades físicas
Apariencia Polvo blanco cristalino
Masa molar 222,243 g/mol
Punto de fusión 96/−98 °C (369/175 K)
Punto de ebullición 185 °C (458 K)
Valores en el SI y en condiciones estándar
(25 y 1 atm), salvo que se indique lo contrario.

Flavonoide (del latín flavus, "amarillo") es el término genérico con que se identifica a una serie de metabolitos secundarios de las plantas. Son sintetizados a partir de una molécula de fenilalanina y 3 de malonil-CoA, a través de lo que se conoce como "vía biosintética de los flavonoides", cuyo producto, la estructura base, se cicla gracias a una enzima isomerasa. La estructura base, un esqueleto C6-C3-C6, puede sufrir posteriormente muchas modificaciones y adiciones de grupos funcionales, por lo que los flavonoides son una familia muy diversa de compuestos, aunque todos los productos finales se caracterizan por ser polifenólicos y solubles en agua. Los que conservan su esqueleto pueden clasificarse, según las isomerizaciones y los grupos funcionales que les son adicionados, en 6 clases principales: las chalconas, las flavonas, los flavonoles, los flavandioles, las antocianinas, y los taninos condensados,[2]​ más una séptima clase, las auronas, tenidas en cuenta por algunos autores por estar presentes en una cantidad considerable de plantas. También el esqueleto puede sufrir modificaciones, convirtiéndose entonces en el esqueleto de los isoflavonoides o el de los neoflavonoides, que por lo tanto también son derivados de los flavonoides.

Se biosintetizan en todas las "plantas terrestres" o embriofitas, y también en algunas algas Charophyta, y aunque todas las especies comparten la vía biosintética central, poseen una gran variabilidad en la composición química de sus productos finales y en los mecanismos de regulación de su biosíntesis, por lo que la composición y concentración de flavonoides es muy variable entre especies y en respuesta al ambiente. Son sintetizados en el citoplasma y luego migran hacia su destino final en las vacuolas celulares. Cumplen funciones metabólicas importantes en las plantas, algunas funciones son comunes a todas las plantas y otras son específicas de algunos taxones. Como ejemplo de funciones universales, los flavonoides son responsables de la resistencia de las plantas a la fotooxidación de la luz ultravioleta del Sol, intervienen en el transporte de la hormona auxina, y se cree que funcionan como defensa ante el herbivorismo. Una función importante cumplida en muchas plantas es la atracción de los animales polinizadores, a través del color o el olor que dan a la planta o a sus flores.

Los flavonoides han adquirido notoriedad pública a raíz de su actividad biológica en el hombre, que los consume con los vegetales. Poseen propiedades muy apreciadas en medicina, como antimicrobianos, anticancerígenos, disminución del riesgo de enfermedades cardíacas, entre otros efectos. También son conocidos por los cultivadores de plantas ornamentales, que manipulan el ambiente de las plantas para aumentar la concentración de flavonoides que dan el color a las hojas y a las flores.

Debido a las importantes funciones metabólicas que tienen en las plantas y los animales, sus vías biosintéticas y mecanismos de regulación están siendo cuidadosamente estudiados. La ciencia aplicada aprovechó este conocimiento en muchos trabajos de ingeniería metabólica, en los que se buscó por ejemplo, aumentar la concentración de flavonoides beneficiosos en las plantas de consumo humano o de uso farmacéutico, modificar su concentración en flores ornamentales para cambiarles el color, e inhibir su producción en el polen para lograr la esterilidad de los híbridos de interés comercial. En lo que respecta a su producción, se ha desarrollado con éxito un cultivo de bacterias que sintetiza flavonoides de interés humano.

Los científicos les han dado usos variados: los genes de la biosíntesis de flavonoides fueron usados como herramienta para analizar los cambios en el ADN, son ejemplos conocidos el descubrimiento de las leyes de Mendel (que pudo rastrear la herencia de los genes de los flavonoides que dan el color a los guisantes), y el descubrimiento de los genes saltarines de Barbara McClintock (que al "saltar" hacia un gen de un flavonoide lo inutilizan y no se expresa el color en el grano de maíz). La extracción e identificación de flavonoides también fue muy usada por los botánicos sistemáticos para establecer parentescos entre especies de plantas.

Aún queda mucho por investigar de los flavonoides, de su valor medicinal, y de su impacto en la nutrición y la salud humana y de los animales. También es necesario continuar la investigación de su estructura, su metabolismo y su biodisponibilidad, por lo que se esperan importantes progresos en este campo.[3]

La estructura base de los flavonoides tiene el esqueleto de una chalcona, y la acción de la enzima isomerasa la convierte en una flavanona.
Esqueleto de los isoflavonoides..
Esqueleto de los neoflavonoides.
  1. Número CAS
  2. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas Winkel-Shirley 2001
  3. Winkel-Shirley, B. 2001b. "It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism". Plant Physiology 127: 1399-1404. (pdf aquí)